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Convective instabilities in a fluid-filled circular cylinder heated from below and
rotating about its vertical axis are investigated both analytically and numerically
under experimental boundary conditions. It is found that there exist two different
forms of convective instabilities: convection-driven inertial waves for small and
moderate Prandtl numbers and wall-localized travelling waves for large Prandtl
numbers. Asymptotic solutions for both forms of convection are derived and
numerical simulations for the same problem are also performed, showing a satisfactory
quantitative agreement between the asymptotic and numerical analyses.

1. Introduction
Motivated by the wish to understand the fundamental dynamics taking place in

planetary fluid interiors and atmospheres, convection in rotating cylindrical geometry
has been extensively studied both experimentally and theoretically (see, for example,
Daniels 1980; Zhong, Ecke & Steinberg 1991; Herrmann & Busse 1993; Kuo &
Cross 1993; Aurnou et al. 2003; Plaut 2003; Young & Read 2008). In particular,
careful numerical studies of convective instabilities in a fluid contained in a circular
cylinder uniformly heated from below and rotating about its vertical axis (Goldstein
et al. 1993, 1994) reveal an exceedingly complicated and seemingly incomprehensible
behaviour at small and moderate Prandtl numbers.

We have recently undertaken the study of convective instabilities in a rotating
circular cylinder with stress-free ends (Zhang, Liao & Busse 2007). The assumption
of the stress-free boundary condition permits separable solutions and, consequently,
leads to a much simplified mathematical problem governed by ordinary differential
equations. It reveals that inertial convection is preferred for fluids with small and
moderate Prandtl numbers if the stress-free condition is assumed. Since inertial
convection is energetically driven by thermal buoyancy against viscous dissipation
that occurs largely in the viscous boundary layers (see, for example, Zhang 1995; Busse
& Simitev 2004), the type of velocity boundary condition plays, both physically and
mathematically, an essential role in determining the main properties of convection. The
Ekman boundary layers resulting from the non-slip top and bottom not only introduce
strong mass fluxes into the interior but also bring dominant terms in the asymptotic
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solution of inertial convection in rapidly rotating cylinders. It is therefore desirable to
gain a better understanding of convection under experimental boundary conditions,
the problem then being governed by partial differential equations, providing a useful
theoretical framework and guidance for experimental studies of the problem.

Thus the primary objective of this study is to understand, through both nume-
rical and asymptotic analysis, convective instabilities in a rotating cylinder under
experimental boundary conditions. Our focus will be mainly on instabilities at small
and moderate Prandtl numbers. However, the asymptotic solution for large Prandtl
numbers is also briefly discussed for the purpose of completeness. It is fortunate that
on recognizing and utilizing the physical nature of convective instabilities, we are able
to derive several relatively simple asymptotic formulas that correctly describe the key
features of convection for all values of the Prandtl number and the aspect ratio and
which agree satisfactorily with the results of numerical analysis.

In what follows we shall begin by presenting the mathematical equations in § 2.
The numerical analysis is briefly presented in § 3, while the corresponding asymptotic
analysis is discussed in § 4, with a summary and several remarks given in § 5.

2. Mathematical formulation
Consideration is given to convective instabilities in a Boussinesq fluid confined

in a circular cylinder of radius so and height d with constant thermal diffusivity
κ , thermal expansion coefficient α and kinematic viscosity ν. The circular cylinder
rotates uniformly about its axis with a constant vertical angular velocity Ω in the
presence of a constant gravitational field g = −g ẑ, and is heated uniformly from
below to produce an unstable vertical temperature gradient, ∇T0 = − β ẑ, where β is a
positive constant. Cylindrical coordinates (s, φ, z) with the corresponding unit vectors

(ŝ, φ̂, ẑ, where ẑ is parallel to the axis of rotation) are used. Making use of the depth
d as the length scale, Ω−1 as the unit of time and βd3Ω/κ as the unit of temperature
fluctuations, the problem of linear convective instability is governed by the
equations

∂u
∂t

+ 2 ẑ × u = −∇p + RΘ ẑ + E∇2u, (2.1)

∇ · u = 0, (2.2)

Pr
∂Θ

∂t
= E( ẑ · u + ∇2Θ), (2.3)

where u is the three-dimensional velocity field, and the temperature deviation
from the purely conductive state T0(z) is represented by Θ . In cylindrical
coordinates, we write solutions of the equations in the form (u, Θ) (s, φ, z, t) = (u, Θ)
(s, z) exp [i(2σ t + mφ)], where m is the azimuthal wavenumber assumed to be positive
and σ is the half-frequency which is used because of its property |σ | < 1 in the limit
E = 0. The three non-dimensional physical parameters – the Rayleigh number R, the
Prandtl number Pr and the Ekman number E – are defined as

R =
αβgd2

Ωκ
, P r =

ν

κ
, E =

ν

Ωd2
.

The geometric parameter is given by the aspect ratio Γ , defined as Γ = s0/d .
Appropriately for experiments of the problem (see, for example, Goldstein et al.
1993), we shall assume no-slip velocity and perfectly conducting conditions on the



Convection in rotating circular cylinders 65

top and bottom of the cylinder,

u = Θ = 0 at z = 0, 1. (2.4)

On the sidewall, we assume no-slip and perfectly insulating conditions which require

u =
∂Θ

∂s
= 0 at s = Γ. (2.5)

Equations (2.1)–(2.3) subject to the boundary conditions in (2.4)–(2.5) form the
convective instability problem which will be solved by both asymptotic and numerical
analysis at, as in practical computations and physical experiments, a small but fixed
E for different values of Pr .

3. Numerical analysis
Compared to the numerical analysis for stress-free ends, which allows solutions in

separable variables, the numerical analysis for the no-slip condition requires solutions
of partial differential equations and hence is much more complicated. In order
to determine the most unstable mode of convective instabilities, we must consider
disturbances of all possible azimuthal wavenumbers. Axisymmetric convection may
be physically preferred in rotating spherical systems (see, for example, Net, Carcia
& Sánchez 2008). However, our extensive numerical and asymptotic studies show
that axisymmetric (m = 0) instabilities are not preferred for any values of Pr when
E � 1 and Γ = O(1). In consequence, we shall present the numerical and asymptotic
analysis only for non-axisymmetric (m �= 0) solutions.

For non-axisymmetric instabilities with m �= 0, the velocity vector u satisfying (2.2)
can be expressed in terms of two scalar potentials Ψ and Φ (Marqués 1990):

u =
1

s

∂Ψ

∂φ
ŝ +

(
∂Φ

∂z
− ∂Ψ

∂s

)
φ̂ − 1

s

∂Φ

∂φ
ẑ. (3.1)

In terms of Ψ and Φ , the non-slip condition on the sidewall and the ends becomes

Ψ =
∂Ψ

∂s
= Φ = 0 at s = Γ ; Ψ =

∂Φ

∂z
= Φ = 0 at z = 0, 1. (3.2)

Making use of the expression (3.1) and applying ẑ · ∇ × and ŝ · ∇ × onto (2.1), we
can derive the three independent non-dimensional scalar equations:(

∂

∂t
− E∇2

)[
1

s

∂

∂s

(
s
∂Φ

∂z

)
−

(
∇2 − ∂2

∂z2

)
Ψ

]
+

2

s

∂2Φ

∂z∂φ
= 0, (3.3)

[
∂

∂t
− E

(
∇2 +

2

s

∂

∂s
+

1

s2

)][
∂2Ψ

∂s∂z
−

(
∇2 − 1

s

∂

∂s
s

∂

∂s

)
Φ

]

− 2

s

∂2Ψ

∂z∂φ
− 2E

s

[
1

s

∂

∂s

(
s
∂2Φ

∂z2

)
−

(
∇2 − ∂2

∂z2

)
∂Ψ

∂z

]
− R

s

∂Θ

∂φ
= 0, (3.4)

[
E∇2 − Pr

∂

∂t

]
Θ − E

s

∂Φ

∂φ
= 0. (3.5)

The above equations are then solved numerically by using the Galerkin-type method
in which, for example, Ψ and Φ are expanded in terms of the Chebyshev functions
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Figure 1. The critical Rayleigh number Rc is plotted as a function of Pr in a rotating cylinder
with Γ = 2 and E =10−4. Solid lines represent the numerical solutions while dashed lines result
from the asymptotic solutions. Of the three numbers in the bracket, the first is Pr , the second
is m and the third is the number of nodes in the s direction.

Tj (x):

Ψ = sm(1 − š)2(1 − ž2)

[
J∑

j=0

L∑
l=0

Ψmjl Tj (ž) Tl(š)

]
ei(mφ+2σ t), (3.6)

Φ = sm+1(1 − š)(1 − ž2)2

[
J∑

j=0

L∑
l=0

Φmjl Tj (ž) Tl(š)

]
ei(mφ+2σ t), (3.7)

where ž = 2z − 1, š = 2s/Γ − 1 and J =L = O(100) for achieving an accuracy within
1 %, the factors sm and sm+1 are imposed for regularity of the solution at s = 0 and
the complex coefficients like Ψmjl are obtained, together with the Rayleigh number R

and the half-frequency σ , by a standard numerical procedure.
The primary aim of our numerical analysis is to provide a valuable comparison

with the results of the asymptotic analysis valid only for small E. Some typical results
of the numerical analysis, along with the asymptotic results, are presented in figure 1,
showing the critical Rayleigh number Rc for the most unstable mode of convective
instabilities as a function of Pr in a rotating cylinder with Γ = 2 and E = 10−4. The
convection patterns for three typical Prandtl numbers, Pr = 0.0025, 0.025 and 1.0, are
depicted in figure 2. We shall discuss the relevant details when comparing them with
the asymptotic solutions.

4. Asymptotic analysis
A key assumption in the asymptotic analysis is that the velocity of convection at

leading order for small or moderate Pr can be represented by a single inertial-wave
mode while buoyancy forces appear only at the next order to drive the inertial wave
against the effects of viscous damping, leading to an asymptotic expansion in the form

u = u0 + ub + u1, p =p0 + pb + p1,

σ= σ0 + σ1, Θ =Θ0 + · · · , R = R1 + · · · ,

}
(4.1)

where u1, p1 and σ1 represent small interior viscous corrections to the leading-order
inviscid interior solution u0, p0 and σ0, while ub and pb denote solutions of the viscous
boundary layers which are non-zero only in the vicinity of the bounding surface of
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Figure 2. Contours of uφ in a horizontal plane at z = 0.75 (upper panels) and in a vertical
plane (lower panels): (a,b) for Pr = 0.0025, (c,d ) for Pr = 0.025 and (e,f ) for Pr = 1.0 with
Γ = 2 and E = 10−4.

the cylinder. More precisely, |u0| =O(1), |ub| =O(1) and |u1| � 1, with the flux from
the oscillatory boundary layer ub providing the matching condition for the secondary
interior flow u1. It is of importance to note that E1/2 cannot be used as an expansion
parameter in this problem because the thickness of an oscillatory viscous boundary
layer is not generally of order E1/2, the flux from the oscillatory boundary layer is
not generally of order E1/2 and the internal viscous contribution is not generally of
the order E1/2 smaller than that of the oscillatory boundary layer (Zhang & Liao
2008). In other words, the effects of spatial and temporal non-uniformities obscure
the form of the asymptotic expansion even for the first viscous corrective terms.

After substitution of the expansion into (2.1)–(2.3), the leading-order problem,
subject to the usual inviscid boundary condition, is given by

∂u0

∂t
+ 2 ẑ × u0 + ∇p0 = 0, (4.2)

∇ · u0 = 0, (4.3)

Pr
∂Θ0

∂t
= E( ẑ · u0 + ∇2Θ0), (4.4)

which describe non-dissipative thermal inertial waves with solutions in the form

ŝ · u0 =
−i

2
(
1 − σ 2

0

) [
σ0ξ

Γ
Jm−1(s̃) +

m(1 − σ0)

s
Jm(s̃)

]
cos(πz) ei(mφ+2σ0t), (4.5)

φ̂ · u0 =
1

2
(
1 − σ 2

0

) [
ξ

Γ
Jm−1(s̃) − m(1 − σ0)

s
Jm(s̃)

]
cos(πz) ei(mφ+2σ0t), (4.6)

ẑ · u0 =
−iπ

2σ0

Jm(s̃) sin(πz) ei(mφ+2σ0t), (4.7)

Θ0 =

N∑
n=1

−2im
(
ξ 2 − β2

mn

)
QmnJm(ξ ) sin(πz)

πΓ 2[π2 + (βmn/Γ )2 + 2PrE−1σ0i]

Jm(βmns/Γ )

Jm(βmn)
ei(mφ+2σ0t), (4.8)

p0 = Jm(s̃) cos(πz) ei(mφ+2σ0t), (4.9)
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where s̃ = ξs/Γ (the simplest vertical structure that is relevant to convective
instabilities is taken), Jm(x) denotes the standard Bessel function, βmn are the roots of
J ′

m(βmn) = 0 with 0 <βm1 < βm2 <βm3 · · ·, Qmn =(πΓβmn)
2/[2σ 2

0 (ξ 2 − β2
mn)

2(β2
mn − m2)],

N � O(10) for achieving an accuracy within 1 % and ξ is a solution of

ξJm−1(ξ ) +
σ0

|σ0|

⎧⎨
⎩

[
1 +

(
ξ

Γ π

)2
]1/2

− 1

⎫⎬
⎭ mJm(ξ ) = 0, (4.10)

σ0 = ±[1 + (ξ/Γ π)2]−1/2. (4.11)

Different values of ξ or σ0 correspond to different inertial modes.
At the next order, the equations governing the perturbations of the interior flow are

i2σ0u1 + 2 ẑ × u1 + ∇p1 = R1 ẑΘ0 + E∇2u0 − i2σ1u0, (4.12)

∇ · u1 = 0. (4.13)

It is straightforward to derive the solvability condition required for the inhomogeneous
equation (4.12):

E1/2

∫
S

p∗
0

[∫ ∞

0

n̂ · ∇ × (n̂ × ub)dη

]
dS =

∫
V

[
R1u∗

0 · ẑΘ0 − 2iσ1|u0|2

− E |∇ × u0|2
]
dV, (4.14)

where u∗
0 and p∗

0 denote the complex conjugates of u0 and p0,
∫

V
represents a

volume integral over the cylinder,
∫

S
represents a surface integral over its bounding

surface with the normal vector n̂ and η is the stretched boundary-layer coordinate.
In deriving (4.14), the mass flux from the Ekman boundary layer is used to provide
the matching condition for u1 at the outer edge of the layer. Each integral in (4.14)
can be evaluated. Upon using (4.5)–(4.8) together with the properties of the Bessel
function, we can show that∫

V

u∗
0 · ẑΘ0 dV =

N∑
n=1

πQmn

π2 + (βmn/Γ )2 + 2iPrE−1σ0

[
mJm(ξ )

σ0

]2

, (4.15)

∫
V

|u0|2 dV =
σ 2

0

π2

∫
V

|∇ × u0|2 dV =
π[(πΓ )2 + m(m − σ0)]J

2
m(ξ )

4σ 2
0

(
1 − σ 2

0

) . (4.16)

In order to evaluate the surface integral on the left-hand side of (4.14), we must
derive the boundary-layer flow ub on the bounding surface of a cylinder. Consider
first the Ekman boundary layer on the bottom surface at z = 0 described by(

i2σ0 − ∂2

∂η2

)
ẑ × ub = 2ub,

(
i2σ0 − ∂2

∂η2

)
ub = −2 ẑ × ub, (4.17)

where η = E−1/2z and ub = −u0 at z = 0 so that the no-slip condition is obeyed. Note
that η = 0 is at the bottom surface while η = ∞ is at the outer edge of the boundary
layer but still located at the bottom in terms of the coordinate z. The boundary-layer
solution to (4.17) on the bottom surface can be expressed in the form

ub =
1

4
(
1 − σ 2

0

) {[
ξ (σ0 − 1)

Γ
Jm−1(s̃) +

2m(1 − σ0)

s
Jm(s̃)

]
(iŝ + φ̂)e−(1+i)η

√
1+σ0

+

[
ξ (σ0 + 1)

Γ
Jm−1(s̃)

]
(iŝ − φ̂)e−(1−i)η

√
1−σ0

}
ei(mφ+2σ0t), (4.18)
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by which, together with (4.9), we can obtain the contribution from the viscous
boundary layer at z = 0 to the integral on the left-hand side of (4.14):

∫ 2π

0

∫ Γ

0

(p∗
0)z=0

[∫ ∞

0

n̂ · ∇ × (n̂ × ub)dη

]
s ds dφ =

[
πJ 2

m(ξ )

8σ 2
0

(
1 − σ 2

0

)
]

× {(
√

1 + σ0 +
√

1 − σ0)C1 − 2σ0(
√

1 + σ0 −
√

1 − σ0)C2

+ i[(
√

1 + σ0 −
√

1 − σ0)C1 − 2σ0(
√

1 + σ0 +
√

1 − σ0)C2]}, (4.19)

where C1 = (1 + σ 2
0 )(m2 + π2Γ 2) − 2mσ0 and C2 = π2Γ 2 + m(m − σ0). Because of the

symmetry between the top and the bottom of the cylinder, the contribution from the
viscous boundary layer at z = 1 is exactly the same as that from the boundary layer
at z =0. Similarly, we can derive the contribution from the sidewall boundary layer
to the integral on the left-hand side of (4.14):

∫ 2π

0

∫ 1

0

(p∗
0)s=Γ

[∫ ∞

0

n̂ · ∇ × (n̂ × ub) dη

]
Γ dz dφ

=
π

4Γ σ0

√
|σ0|

(
i +

σ0

|σ0|

)
(m2 + Γ 2π2)J 2

m(ξ ). (4.20)

Substitution of (4.15), (4.16), (4.19) and (4.20) into the solvability condition (4.14)
yields a complex equation whose real part determines R1 while the imaginary part
gives rise to the viscous correction σ1:

R1 =
E1/2

4m2
√

1 − σ 2
0

[
N∑

n=1

(
π2 + β2

mn/Γ
2
)
Qmn(

π2 + β2
mn/Γ

2
)2

+ (2σ0Pr/E)2

]−1

×
{

E1/2π2[(πΓ )2 + m(m − σ0)]

σ 2
0

√
1 − σ 2

0

− 2σ0m[
√

1 + σ0 +
√

1 − σ0]

+ (m2 + π2Γ 2)

[√
|σ0|(1 − σ 2

0 )

Γ
+ (1 + σ0)

3/2 + (1 − σ0)
3/2

]}
, (4.21)

2σ = 2σ0 −
(
1 − σ 2

0

)1/2
E1/2

π2Γ 2 + m(m − σ0)

{[
N∑

n=1

Qmn(
π2 + β2

mn/Γ
2
)2

+ (2σ0Pr/E)2

]

×
[
8m2R0PrE−3/2σ0

(
1 − σ 2

0

)1/2
]

+ 2σ0m[
√

1 + σ0 −
√

1 − σ0]

+ (m2 + π2Γ 2)

[
σ0

√
1 − σ 2

0

Γ
√

|σ0|
− (1 + σ0)

3/2 + (1 − σ0)
3/2

]}
. (4.22)

In addition to the expressions for the Rayleigh number R1 and the frequency σ , the
leading-order velocity of convection can be explicitly written as
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ŝ · u =
i

4
(
1 − σ 2

0

) {
−2

[
σ0ξ

Γ
Jm−1 (s̃) +

m(1 − σ0)

s
Jm (s̃)

]
cos πz

+

[
ξ (σ0 − 1)

Γ
Jm−1 (s̃) +

2m(1 − σ0)

s
Jm (s̃)

] [
e−χ+z − e−χ+(1−z)

]

+
ξ (σ0 + 1)

Γ
Jm−1 (s̃)

[
e−χ−z − e−χ−(1−z)

]}
ei(2σ t+mφ), (4.23)

φ̂ · u =
1

4
(
1 − σ 2

0

) {
2

[
ξJm−1 (s̃)

Γ
− m(1 − σ0)

s
Jm (s̃)

]
cos πz +

mJm (s̃)

2σ0Γ
cos πze−χ(Γ −s)

+

[
ξ (σ0 − 1)

Γ
Jm−1 (s̃) +

2m(1 − σ0)

s
Jm (s̃)

] [
e−χ+z − e−χ+(1−z)

]

− ξ (σ0 + 1)

Γ
Jm−1 (s̃)

[
e−χ−z − e−χ−(1−z)

]}
ei(2σ t+mφ), (4.24)

ẑ · u = − iπ

2σ0

[
Jm (s̃) − Jm (ξ ) e−χ(Γ −s)

]
sin (πz) ei(2σ t+mφ), (4.25)

where χ+ = (1 + i)
√

E−1(1 + σ0), χ− = (1 − i)
√

E−1(1 − σ0) and χ =
√

|σ0|E−1(1 +
iσ0/|σ0|). A complete analytical solution of the problem is described by (4.21)–(4.25).

As indicated by (4.21), the Rayleigh number R1 required to initiate inertial
convection increases rapidly with increasing Pr and the sidewall-localized convection
would become physically preferred at large Pr . It is worth mentioning that the
asymptotic analysis (Herrmann & Busse 1993) was concerned with the leading-order
solution for which the effect of the non-slip condition was not considered. Since
cylindrical geometry plays an insignificant role in the wall-localized convective flow,
we can simply re-scale the asymptotic solution in a channel obtained by Liao, Zhang
& Chang (2006), giving rise to

R = 2π2

√
6
√

3 + 73.80E1/3, (4.26)

σ = [π2
√

3

√
2 +

√
3]E/Pr − 290.6E4/3Pr−1, (4.27)

m = Γ
[
π

√
2 +

√
3 − 27.76E1/3

]
, (4.28)

which has taken into account the non-slip boundary condition while its leading order
is the same as that given by Herrmann & Busse (1993).

For any given values of Γ , Pr and E, the following three steps are usually required
to find the most unstable mode of convective instabilities: (a) use (4.21) to calculate
the smallest R1 required for the non-axisymmetric inertial convection over different
values of σ0, i.e. over different inertial modes; (b) use (4.26) to calculate the second
Rayleigh number required for the wall-localized convection and (c) compare the two
Rayleigh numbers obtained at exactly the same Γ , Pr and E. Of physical significance
is the minimum value of the Rayleigh number, which is denoted by Rc and will be
referred to as the critical Rayleigh number, at which convective instabilities first set
in when the Rayleigh number R gradually increases from zero.

The Rc as a function of Pr , calculated from both the asymptotic and the
numerical analysis, is shown in figure 1 for E = 10−4 and Γ = 2: all the most
unstable modes of convection are non-axisymmetric. The azimuthal wavenumber
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mc and the corresponding nodes in the radial direction for several typical Prandtl
numbers are also shown in figure 1. For example, the asymptotic formulas (4.21)–
(4.22) at Pr =0.0025 yield Rc = 3.41, mc = 8, σc = 0.474 with σ0 = 0.4773, while the
numerical analysis gives Rc = 3.58, mc = 8, σc =0.473, with the spatial structure of
its flow displayed in figure 2(a,b). Note that there are no noticeable differences
between the numerical solution and the corresponding analytical solutions (4.23)–
(4.25) when they are plotted. When Pr increases, the critical wavenumber mc may
decrease at the expense of increasing the radial complexity of the flow. At Pr = 0.025,
the asymptotic expressions (4.21)–(4.22) give rise to Rc = 20.4, mc = 4, σc =0.248
with σ0 = 0.2634 and six nodes in the radial direction, whose spatial structure is
shown in figure 2(c,d ). The corresponding numerical solution is characterized by
Rc =21.6, mc = 4, σc = 0.247, showing nearly the identical spatial structure. When
Pr increases to about 0.70 at E = 10−4, as shown in figure 1, the asymptotic
solution given by (4.21), which is still mathematically valid and gives a satisfactory
approximation to the problem, ceases to be physically relevant because the wall-
localized convection given by (4.26)–(4.28) becomes preferred. A typical wall-localized
solution at Pr = 1.0 for E =10−4 and Γ = 2 is shown in figure 2(e,f ). In this case, the
asymptotic analysis gives Rc = 63.6, mc = 9.56 and σc = 0.0020, while the numerical
analysis yields Rc =62.6, mc = 10 and σc = 0.0024. Moreover, the agreement between
the asymptotic and numerical analysis is expectedly better for smaller values of
E. For example, at E = 10−5 with Γ = 2 and Pr = 0.01, the asymptotic expressions
(4.21)–(4.22) yield Rc = 15.0, mc = 2, σc =0.150 while the numerical analysis gives
Rc =15.4, mc = 2, σc = 0.150.

Our analysis reveals that there exist three different regimes of convection in a
rotating cylinder at a given small E. The first is the regime of inertial convection at
very small Pr , i.e. 0 � Pr/E � O(1). As displayed in the left portion of figure 1 for
0 � Pr � 10−4, as well as indicated by the asymptotic expression (4.21), the critical
Rayleigh number Rc is nearly independent of Pr with Rc = O(E1/2). In this regime, the
temperature Θ is marked by approximately the same phase as that of the vertical flow
uz in the convective heat transport. But this situation is changed when Pr/E >O(1),
which is shown in the middle portion of figure 1 for 10−4 < Pr < 10−1. Although the
inertial effect is still predominant, the temperature Θ is marked by a large phase shift
comparing to the vertical flow uz and, consequently, the Rc increases significantly with
increasing Pr . In this moderate-Pr regime, the asymptotic expression (4.21) indicates
that there exist no simple asymptotic relations between Rc and E or between Rc and
Pr . It is also in this regime that convection pattern is not only highly complex but also
strongly dependent on Pr . This complicated behaviour stems from the existence of a
large manifold of two-dimensional inertial modes that may be excited by convective
instabilities in this regime, indicating how difficult any numerical attempt to pinpoint
its coherent structure will be. For larger values of Pr , which is shown in the right
portion of figure 1 for Pr > 10−1, the strong viscous effect resulting from the wall-
localized boundary-layer flow is dynamically dominant, leading to the relatively simple
asymptotic dependence. Our calculations for different values of E suggest that this
picture is qualitatively correct for Γ = O(1) at any given small Ekman number E.

5. Summary and remarks
The problem of convection in a rotating circular cylinder heated from below and

rotating about a vertical axis has been studied as a paradigm for understanding the
general dynamics of rotating convection. We have undertaken both numerical and
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analytical studies of convective instabilities under experimental boundary conditions,
showing that the instabilities are either of inertial-wave type or of wall-localized type.
In the asymptotic study, the primary assumption is that the convective flow at small
or moderate Pr can be represented by an inertial-wave mode. In the numerical study,
we have solved the partial differential equations governing the convection problem.
Agreement between the analytical and numerical solutions has been shown to be
satisfactory.

There are physical and mathematical consequences of our asymptotic analysis for
convection in rotating cylinders. Physically speaking, when a cylinder rotates rapidly
(E � 1), the fundamental dynamics of fluid motions can be intuitively illustrated by
the Proudman–Taylor theorem stating that infinitesimal steady motions in rotating
inviscid fluids are two-dimensional with respect to the direction of ẑ. It follows that
∂uz/∂z =0 and that, upon applying the boundary condition on the top and bottom of
a cylinder, we must conclude that uz = 0 within the cylinder. In other words, convection
cannot take place: the effect of rotation strongly constrains and stabilizes the system.
The constraint must be broken so that convection can occur. Our asymptotic analysis
shows that it can be broken either by inertial effects for fluids with small Prandtl
numbers or by viscous effects for fluids with large Prandtl numbers in connection with
the boundary-layer-type convection. Mathematically speaking, the basic assumption
that the convection velocity at leading order for small or moderate Pr can be
represented by an inertial-wave mode implies that the present stability analysis is
quite different from the usual one such as that for the Rayleigh–Bénard problem. In
our stability analysis, it is not a question of simply finding a wavenumber m that
minimizes the Rayleigh number and then determines the most unstable convection
mode. It is a question of finding the two-dimensional structure of a leading-order flow
that gives rise to the minimum Rayleigh number. This explains why it is so difficult to
elucidate the parametric dependence of the problem numerically. Moreover, since the
asymptotic formulas can be readily evaluated, they would provide a helpful guidance
for the experimental studies of convection in rotating circular cylinders.

This study represents the first asymptotic analysis for convective instabilities in
a rotating cylinder with experimental boundary conditions for small and moderate
Prandtl numbers. It is significant to note that the two sets of asymptotic formulas
given in § 4 cover the whole parameter regime of the problem: all values of the aspect
ratio Γ and the Prandtl number Pr at any fixed small Ekman number E. Especially,
it is somewhat surprising that the seemingly incomprehensible and highly complicated
convection revealed numerically, for example, by Goldstein et al. (1993, 1994) can be
satisfactorily described by several relatively simple analytical formulas.
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